Reliable better precision at shafts

hydrostatic tailstocks

Spindle technic

Why using hydrostatic tailstocks?

- ✓ Using hydrostatic tailstock, roundness of grinded shafts depends not quality of center at work piece. By rotating quill, roundness 0,2µm can be reached independent of work piece center
- ✓ Heavy work pieces can be grinded between centers < $0,5\mu$ m.
- ✓ Shafts with big bores can be grinded between centers without any inserts with small centers.
- Clamping force is very constant and not changing during machining. Crank shafts and balancing shafts can be grinded in much higher quality.
- ✓ Hydrostatic bearings are wear free so good damping and excellent runout keep long time.
- ✓ Drive through work piece or with separate motor

Quill diameter	Ø35 mm	Ø50 mm	Ø70 mm	Ø100mm
Max. speed VG32	2000 pm	1500 rpm	1.000 rpm	700 rpm
Max. radial force 50bar ²⁾	350 N	1.000 N	2000 N	4.000 N
Max. clamping force 50bar ²⁾	350 N	1.000 N	2.000 N	4.000 N
Radial runout	< 0,2µm	0,2µm	0,2µm	0,25µm
oil flow max. 32°C, VG32 ³⁾	2 + 2 l/min	2,2 + 2,2 l/min	2,5 + 2,5 l/min	3 + 3 l/min
Radial stiffness ⁴⁾	140 N/µm	220 N/µm	600 N/µm	1000 N/µm
stroke	40 mm	45 mm	50 mm	55 mm

¹⁾ Higher speed possible with thinner oil ²⁾ Forces can increase at higher pump pressure.

³⁾ oil flow can change, if pump pressure, oil viscosity or max. oil temperature change. Oil flow for hydrostatic bearing + oil flow for hydraulic cylinder ⁴⁾ Radial gap stiffness change with pump pressure and oil viscosity